An Improved MOM-GEC Method for Fast and Accurate Analysis of 2-D Planar Structures in Waveguides: Application to Planar Microstrip Antennas
نویسندگان
چکیده
This paper presents a new hybridization between MoM-GEC and a MultiResolution analysis (MR) which is based on the use of wavelets functions as trial functions. The proposed approach is developed to speed up convergence, alleviate calculation and then provide a considerable gain in requirements (processing time and memory storage) because it generates a sparse linear system. The approach consists in calculating the total current and input impedance on an invariant metallic pattern through two steps.The first one consists in expressing the boundary conditions of the unknown electromagnetic current with a single electrical circuit using the Generalized Equivalent Circuit method (GEC) and then deduce an electromagnetic equation based on the impedance operator [1,2]. The impedance operator used here is described using the local modal basis of the waveguide enclosing the studied structure. The second step consists in approximating the total current using orthonormal periodic wavelets as testing functions and the local modal basis of the waveguide as basis functions.The proposed approach allows fast calculation of such inner products through the use of the wavelets multiresolution (MR) analysis advantages, thus significantly reducing the required CPU-time for microstriptype structure analysis [3,4]. A sparse matrix is generated from the application of a threshold .A sparsely filled matrix is easier to store and invert [5,6]. Based on this approach, we study a 2-D planar structure including a step discontinuity. The obtained results show good accuracy with the method of moments. Moreover, we prove the considerable improvements in CPU time and memory storage achieved by the MR-GEC approach when studying these structures.
منابع مشابه
Analysis of Planar Microstrip Circuits Using Three-Dimensional Transmission Line Matrix Method
The frequency-dependent characteristics of microstrip planar circuits have been previously analyzed using several full-wave approaches. All those methods directly give characteristic of the circuits frequency by frequency. Computation time becomes important if these planar circuits have to be studied over a very large bandwidth. The transmission line matrix (TLM) method presented in this paper ...
متن کاملA Higher Order B-Splines 1-D Finite Element Analysis of Lossy Dispersive Inhomogeneous Planar Layers
In this paper we propose an accurate and fast numerical method to obtain scattering fields from lossy dispersive inhomogeneous planar layers for both TE and TM polarizations. A new method is introduced to analyze lossy Inhomogeneous Planar Layers. In this method by applying spline based Galerkin’s method of moment to scalar wave equation and imposing boundary conditions we obtain reflection and...
متن کاملComplementary Periodic Structures for Miniaturization of Planar Antennas
In this paper various layered planar periodic structures which provide miniaturization of planar antennas are proposed and discussed. The proposed designs are based on two concepts, reactive impedance surfaces and complementary periodic structures. In the proposed structures, complementary periodic rings and slots are patterned on the intermediate boundaries of the dielectric layers. A patch an...
متن کاملComparative Investigation of Half-mode SIW Cavity and Microstrip Hybrid Antenna Using Different Patch Shapes
A set of hybrid microstrip patch and semi-circular cavity antennas is introduced. The semi-circular cavity is implemented using Half-mode Substrate Integrated Waveguide (HMSIW) technique. Different shapes of patch include rectangular, semi-circular and equilateral triangular are excited using proximity effect by the circular SIW cavity at its TM010 mode of operation. The whole structures have b...
متن کاملAccurate Analysis of Dielectric Backed Planar Conducting Layers of Arbitrarily Shaped in a Rectangular Waveguide
The characteristics of dielectric backed planar conducting layers of arbitrarily shaped in a rectangular waveguide are calculated by means of coupled integral equation technique (CIET) which accurately takes higher order mode interactions. Equivalent structures for the accurate analysis whole structure are introduced in which magnetic surface currents are identified as the unknowns at the apert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016